Copied to
clipboard

G = C7⋊C32order 441 = 32·72

Direct product of C7⋊C3 and C7⋊C3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C7⋊C32, C72⋊C32, C723C3⋊C3, C72⋊C3⋊C3, (C7×C7⋊C3)⋊C3, C71(C3×C7⋊C3), SmallGroup(441,9)

Series: Derived Chief Lower central Upper central

C1C72 — C7⋊C32
C1C7C72C7×C7⋊C3 — C7⋊C32
C72 — C7⋊C32
C1

Generators and relations for C7⋊C32
 G = < a,b,c,d | a7=b3=c7=d3=1, bab-1=a4, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >

7C3
7C3
49C3
49C3
3C7
3C7
49C32
7C21
7C7⋊C3
7C7⋊C3
7C7⋊C3
7C21
7C7⋊C3
21C7⋊C3
21C7⋊C3
7C3×C7⋊C3
7C3×C7⋊C3

Character table of C7⋊C32

 class 13A3B3C3D3E3F3G3H7A7B7C7D7E7F7G7H21A21B21C21D21E21F21G21H
 size 1777749494949333399992121212121212121
ρ11111111111111111111111111    trivial
ρ21ζ32ζ3ζ32ζ311ζ3ζ3211111111ζ3ζ32ζ32ζ32ζ3ζ3ζ3ζ32    linear of order 3
ρ3111ζ3ζ32ζ32ζ3ζ3ζ3211111111111ζ3ζ32ζ321ζ3    linear of order 3
ρ4111ζ32ζ3ζ3ζ32ζ32ζ311111111111ζ32ζ3ζ31ζ32    linear of order 3
ρ51ζ32ζ311ζ32ζ3ζ32ζ311111111ζ3ζ32ζ32111ζ31    linear of order 3
ρ61ζ3ζ32ζ3ζ3211ζ32ζ311111111ζ32ζ3ζ3ζ3ζ32ζ32ζ32ζ3    linear of order 3
ρ71ζ3ζ3211ζ3ζ32ζ3ζ3211111111ζ32ζ3ζ3111ζ321    linear of order 3
ρ81ζ3ζ32ζ32ζ3ζ32ζ31111111111ζ32ζ3ζ3ζ32ζ3ζ3ζ32ζ32    linear of order 3
ρ91ζ32ζ3ζ3ζ32ζ3ζ321111111111ζ3ζ32ζ32ζ3ζ32ζ32ζ3ζ3    linear of order 3
ρ10300330000-1+-7/233-1--7/2-1--7/2-1+-7/2-1--7/2-1+-7/2000-1+-7/2-1+-7/2-1--7/20-1--7/2    complex lifted from C7⋊C3
ρ113330000003-1--7/2-1+-7/23-1+-7/2-1+-7/2-1--7/2-1--7/2-1--7/2-1+-7/2-1--7/2000-1+-7/20    complex lifted from C7⋊C3
ρ12300330000-1--7/233-1+-7/2-1+-7/2-1--7/2-1+-7/2-1--7/2000-1--7/2-1--7/2-1+-7/20-1+-7/2    complex lifted from C7⋊C3
ρ133330000003-1+-7/2-1--7/23-1--7/2-1--7/2-1+-7/2-1+-7/2-1+-7/2-1--7/2-1+-7/2000-1--7/20    complex lifted from C7⋊C3
ρ143-3+3-3/2-3-3-3/20000003-1--7/2-1+-7/23-1+-7/2-1+-7/2-1--7/2-1--7/2ζ32ζ7632ζ7532ζ73ζ3ζ743ζ723ζ7ζ3ζ763ζ753ζ73000ζ32ζ7432ζ7232ζ70    complex lifted from C3×C7⋊C3
ρ153-3-3-3/2-3+3-3/20000003-1+-7/2-1--7/23-1--7/2-1--7/2-1+-7/2-1+-7/2ζ3ζ743ζ723ζ7ζ32ζ7632ζ7532ζ73ζ32ζ7432ζ7232ζ7000ζ3ζ763ζ753ζ730    complex lifted from C3×C7⋊C3
ρ16300-3-3-3/2-3+3-3/20000-1+-7/233-1--7/2-1--7/2-1+-7/2-1--7/2-1+-7/2000ζ32ζ7432ζ7232ζ7ζ3ζ743ζ723ζ7ζ3ζ763ζ753ζ730ζ32ζ7632ζ7532ζ73    complex lifted from C3×C7⋊C3
ρ17300-3+3-3/2-3-3-3/20000-1--7/233-1+-7/2-1+-7/2-1--7/2-1+-7/2-1--7/2000ζ3ζ763ζ753ζ73ζ32ζ7632ζ7532ζ73ζ32ζ7432ζ7232ζ70ζ3ζ743ζ723ζ7    complex lifted from C3×C7⋊C3
ρ18300-3-3-3/2-3+3-3/20000-1--7/233-1+-7/2-1+-7/2-1--7/2-1+-7/2-1--7/2000ζ32ζ7632ζ7532ζ73ζ3ζ763ζ753ζ73ζ3ζ743ζ723ζ70ζ32ζ7432ζ7232ζ7    complex lifted from C3×C7⋊C3
ρ193-3-3-3/2-3+3-3/20000003-1--7/2-1+-7/23-1+-7/2-1+-7/2-1--7/2-1--7/2ζ3ζ763ζ753ζ73ζ32ζ7432ζ7232ζ7ζ32ζ7632ζ7532ζ73000ζ3ζ743ζ723ζ70    complex lifted from C3×C7⋊C3
ρ20300-3+3-3/2-3-3-3/20000-1+-7/233-1--7/2-1--7/2-1+-7/2-1--7/2-1+-7/2000ζ3ζ743ζ723ζ7ζ32ζ7432ζ7232ζ7ζ32ζ7632ζ7532ζ730ζ3ζ763ζ753ζ73    complex lifted from C3×C7⋊C3
ρ213-3+3-3/2-3-3-3/20000003-1+-7/2-1--7/23-1--7/2-1--7/2-1+-7/2-1+-7/2ζ32ζ7432ζ7232ζ7ζ3ζ763ζ753ζ73ζ3ζ743ζ723ζ7000ζ32ζ7632ζ7532ζ730    complex lifted from C3×C7⋊C3
ρ22900000000-3+3-7/2-3-3-7/2-3+3-7/2-3-3-7/22-3--7/2-3+-7/2200000000    complex faithful
ρ23900000000-3-3-7/2-3+3-7/2-3-3-7/2-3+3-7/22-3+-7/2-3--7/2200000000    complex faithful
ρ24900000000-3+3-7/2-3+3-7/2-3-3-7/2-3-3-7/2-3+-7/222-3--7/200000000    complex faithful
ρ25900000000-3-3-7/2-3-3-7/2-3+3-7/2-3+3-7/2-3--7/222-3+-7/200000000    complex faithful

Permutation representations of C7⋊C32
On 21 points - transitive group 21T21
Generators in S21
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)
(1 8 15)(2 10 19)(3 12 16)(4 14 20)(5 9 17)(6 11 21)(7 13 18)
(1 7 6 5 4 3 2)(8 13 11 9 14 12 10)(15 18 21 17 20 16 19)
(1 15 8)(2 16 9)(3 17 10)(4 18 11)(5 19 12)(6 20 13)(7 21 14)

G:=sub<Sym(21)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21), (1,8,15)(2,10,19)(3,12,16)(4,14,20)(5,9,17)(6,11,21)(7,13,18), (1,7,6,5,4,3,2)(8,13,11,9,14,12,10)(15,18,21,17,20,16,19), (1,15,8)(2,16,9)(3,17,10)(4,18,11)(5,19,12)(6,20,13)(7,21,14)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21), (1,8,15)(2,10,19)(3,12,16)(4,14,20)(5,9,17)(6,11,21)(7,13,18), (1,7,6,5,4,3,2)(8,13,11,9,14,12,10)(15,18,21,17,20,16,19), (1,15,8)(2,16,9)(3,17,10)(4,18,11)(5,19,12)(6,20,13)(7,21,14) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21)], [(1,8,15),(2,10,19),(3,12,16),(4,14,20),(5,9,17),(6,11,21),(7,13,18)], [(1,7,6,5,4,3,2),(8,13,11,9,14,12,10),(15,18,21,17,20,16,19)], [(1,15,8),(2,16,9),(3,17,10),(4,18,11),(5,19,12),(6,20,13),(7,21,14)]])

G:=TransitiveGroup(21,21);

Matrix representation of C7⋊C32 in GL6(𝔽43)

1810000
1901000
100000
000100
000010
000001
,
3604000
007000
0367000
0003600
0000360
0000036
,
100000
010000
001000
0004210
0009934
00083410
,
600000
060000
006000
000006
000600
000060

G:=sub<GL(6,GF(43))| [18,19,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[36,0,0,0,0,0,0,0,36,0,0,0,4,7,7,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,36],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,42,9,8,0,0,0,1,9,34,0,0,0,0,34,10],[6,0,0,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,6,0,0] >;

C7⋊C32 in GAP, Magma, Sage, TeX

C_7\rtimes C_3^2
% in TeX

G:=Group("C7:C3^2");
// GroupNames label

G:=SmallGroup(441,9);
// by ID

G=gap.SmallGroup(441,9);
# by ID

G:=PCGroup([4,-3,-3,-7,-7,78,2019]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^3=c^7=d^3=1,b*a*b^-1=a^4,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations

Export

Subgroup lattice of C7⋊C32 in TeX
Character table of C7⋊C32 in TeX

׿
×
𝔽