direct product, metabelian, supersoluble, monomial, A-group
Aliases: C7⋊C32, C72⋊C32, C72⋊3C3⋊C3, C72⋊C3⋊C3, (C7×C7⋊C3)⋊C3, C7⋊1(C3×C7⋊C3), SmallGroup(441,9)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C7 — C72 — C7×C7⋊C3 — C7⋊C32 |
C72 — C7⋊C32 |
Generators and relations for C7⋊C32
G = < a,b,c,d | a7=b3=c7=d3=1, bab-1=a4, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >
Character table of C7⋊C32
class | 1 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 7A | 7B | 7C | 7D | 7E | 7F | 7G | 7H | 21A | 21B | 21C | 21D | 21E | 21F | 21G | 21H | |
size | 1 | 7 | 7 | 7 | 7 | 49 | 49 | 49 | 49 | 3 | 3 | 3 | 3 | 9 | 9 | 9 | 9 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ3 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | linear of order 3 |
ρ4 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | linear of order 3 |
ρ5 | 1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | 1 | 1 | 1 | ζ3 | 1 | linear of order 3 |
ρ6 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ7 | 1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | 1 | 1 | 1 | ζ32 | 1 | linear of order 3 |
ρ8 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ9 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ10 | 3 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | -1+√-7/2 | 3 | 3 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | 0 | 0 | 0 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | 0 | -1-√-7/2 | complex lifted from C7⋊C3 |
ρ11 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | -1-√-7/2 | -1+√-7/2 | 3 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | 0 | 0 | 0 | -1+√-7/2 | 0 | complex lifted from C7⋊C3 |
ρ12 | 3 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | -1-√-7/2 | 3 | 3 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | 0 | 0 | 0 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | 0 | -1+√-7/2 | complex lifted from C7⋊C3 |
ρ13 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | -1+√-7/2 | -1-√-7/2 | 3 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | 0 | 0 | 0 | -1-√-7/2 | 0 | complex lifted from C7⋊C3 |
ρ14 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | -1-√-7/2 | -1+√-7/2 | 3 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | ζ32ζ76+ζ32ζ75+ζ32ζ73 | ζ3ζ74+ζ3ζ72+ζ3ζ7 | ζ3ζ76+ζ3ζ75+ζ3ζ73 | 0 | 0 | 0 | ζ32ζ74+ζ32ζ72+ζ32ζ7 | 0 | complex lifted from C3×C7⋊C3 |
ρ15 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | -1+√-7/2 | -1-√-7/2 | 3 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | ζ3ζ74+ζ3ζ72+ζ3ζ7 | ζ32ζ76+ζ32ζ75+ζ32ζ73 | ζ32ζ74+ζ32ζ72+ζ32ζ7 | 0 | 0 | 0 | ζ3ζ76+ζ3ζ75+ζ3ζ73 | 0 | complex lifted from C3×C7⋊C3 |
ρ16 | 3 | 0 | 0 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | -1+√-7/2 | 3 | 3 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | 0 | 0 | 0 | ζ32ζ74+ζ32ζ72+ζ32ζ7 | ζ3ζ74+ζ3ζ72+ζ3ζ7 | ζ3ζ76+ζ3ζ75+ζ3ζ73 | 0 | ζ32ζ76+ζ32ζ75+ζ32ζ73 | complex lifted from C3×C7⋊C3 |
ρ17 | 3 | 0 | 0 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | -1-√-7/2 | 3 | 3 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | 0 | 0 | 0 | ζ3ζ76+ζ3ζ75+ζ3ζ73 | ζ32ζ76+ζ32ζ75+ζ32ζ73 | ζ32ζ74+ζ32ζ72+ζ32ζ7 | 0 | ζ3ζ74+ζ3ζ72+ζ3ζ7 | complex lifted from C3×C7⋊C3 |
ρ18 | 3 | 0 | 0 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | -1-√-7/2 | 3 | 3 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | 0 | 0 | 0 | ζ32ζ76+ζ32ζ75+ζ32ζ73 | ζ3ζ76+ζ3ζ75+ζ3ζ73 | ζ3ζ74+ζ3ζ72+ζ3ζ7 | 0 | ζ32ζ74+ζ32ζ72+ζ32ζ7 | complex lifted from C3×C7⋊C3 |
ρ19 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | -1-√-7/2 | -1+√-7/2 | 3 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | ζ3ζ76+ζ3ζ75+ζ3ζ73 | ζ32ζ74+ζ32ζ72+ζ32ζ7 | ζ32ζ76+ζ32ζ75+ζ32ζ73 | 0 | 0 | 0 | ζ3ζ74+ζ3ζ72+ζ3ζ7 | 0 | complex lifted from C3×C7⋊C3 |
ρ20 | 3 | 0 | 0 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | -1+√-7/2 | 3 | 3 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | 0 | 0 | 0 | ζ3ζ74+ζ3ζ72+ζ3ζ7 | ζ32ζ74+ζ32ζ72+ζ32ζ7 | ζ32ζ76+ζ32ζ75+ζ32ζ73 | 0 | ζ3ζ76+ζ3ζ75+ζ3ζ73 | complex lifted from C3×C7⋊C3 |
ρ21 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | -1+√-7/2 | -1-√-7/2 | 3 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | ζ32ζ74+ζ32ζ72+ζ32ζ7 | ζ3ζ76+ζ3ζ75+ζ3ζ73 | ζ3ζ74+ζ3ζ72+ζ3ζ7 | 0 | 0 | 0 | ζ32ζ76+ζ32ζ75+ζ32ζ73 | 0 | complex lifted from C3×C7⋊C3 |
ρ22 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3+3√-7/2 | -3-3√-7/2 | -3+3√-7/2 | -3-3√-7/2 | 2 | -3-√-7/2 | -3+√-7/2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ23 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3-3√-7/2 | -3+3√-7/2 | -3-3√-7/2 | -3+3√-7/2 | 2 | -3+√-7/2 | -3-√-7/2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3+3√-7/2 | -3+3√-7/2 | -3-3√-7/2 | -3-3√-7/2 | -3+√-7/2 | 2 | 2 | -3-√-7/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3-3√-7/2 | -3-3√-7/2 | -3+3√-7/2 | -3+3√-7/2 | -3-√-7/2 | 2 | 2 | -3+√-7/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)
(1 8 15)(2 10 19)(3 12 16)(4 14 20)(5 9 17)(6 11 21)(7 13 18)
(1 7 6 5 4 3 2)(8 13 11 9 14 12 10)(15 18 21 17 20 16 19)
(1 15 8)(2 16 9)(3 17 10)(4 18 11)(5 19 12)(6 20 13)(7 21 14)
G:=sub<Sym(21)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21), (1,8,15)(2,10,19)(3,12,16)(4,14,20)(5,9,17)(6,11,21)(7,13,18), (1,7,6,5,4,3,2)(8,13,11,9,14,12,10)(15,18,21,17,20,16,19), (1,15,8)(2,16,9)(3,17,10)(4,18,11)(5,19,12)(6,20,13)(7,21,14)>;
G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21), (1,8,15)(2,10,19)(3,12,16)(4,14,20)(5,9,17)(6,11,21)(7,13,18), (1,7,6,5,4,3,2)(8,13,11,9,14,12,10)(15,18,21,17,20,16,19), (1,15,8)(2,16,9)(3,17,10)(4,18,11)(5,19,12)(6,20,13)(7,21,14) );
G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21)], [(1,8,15),(2,10,19),(3,12,16),(4,14,20),(5,9,17),(6,11,21),(7,13,18)], [(1,7,6,5,4,3,2),(8,13,11,9,14,12,10),(15,18,21,17,20,16,19)], [(1,15,8),(2,16,9),(3,17,10),(4,18,11),(5,19,12),(6,20,13),(7,21,14)]])
G:=TransitiveGroup(21,21);
Matrix representation of C7⋊C32 ►in GL6(𝔽43)
18 | 1 | 0 | 0 | 0 | 0 |
19 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
36 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 7 | 0 | 0 | 0 |
0 | 36 | 7 | 0 | 0 | 0 |
0 | 0 | 0 | 36 | 0 | 0 |
0 | 0 | 0 | 0 | 36 | 0 |
0 | 0 | 0 | 0 | 0 | 36 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 42 | 1 | 0 |
0 | 0 | 0 | 9 | 9 | 34 |
0 | 0 | 0 | 8 | 34 | 10 |
6 | 0 | 0 | 0 | 0 | 0 |
0 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 6 |
0 | 0 | 0 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 0 |
G:=sub<GL(6,GF(43))| [18,19,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[36,0,0,0,0,0,0,0,36,0,0,0,4,7,7,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,36],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,42,9,8,0,0,0,1,9,34,0,0,0,0,34,10],[6,0,0,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,6,0,0] >;
C7⋊C32 in GAP, Magma, Sage, TeX
C_7\rtimes C_3^2
% in TeX
G:=Group("C7:C3^2");
// GroupNames label
G:=SmallGroup(441,9);
// by ID
G=gap.SmallGroup(441,9);
# by ID
G:=PCGroup([4,-3,-3,-7,-7,78,2019]);
// Polycyclic
G:=Group<a,b,c,d|a^7=b^3=c^7=d^3=1,b*a*b^-1=a^4,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations
Export
Subgroup lattice of C7⋊C32 in TeX
Character table of C7⋊C32 in TeX